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Abstract 

We use chiral perturbation theory to show that pseudo-Goldstone boson scat- 
tering and gluon fusion probe different aspects of electroweak symmetry breaking 
at hadron colliders. In particular, the physics responsible for unitarizing the lowest- 
order pseudo-Goldstone boson scattering amplitudes need not significantly affect 
the gluon fusion process. We first show this within the context of strict chiral 
perturbation theory, and then discuss it using the language of resonances. 
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In a recent series of papers, we have used chiral perturbation theory to study 

electroweak symmetry breaking at high-energy hadron colliders [1,2,3]. Our anal- 

ysis is motivated by technicolor theories, in which the Higgs sector of the standard 

model is replaced by some sort of new, strongly-interacting physics that dynam- 

ically breaks the electroweak symmetry. The new physics induces strong inter- 

actions between the would-be Goldstone bosons that form the longitudinal com- 

ponents of the W and 2. The interactions can be parametrized quite generally 

in terms of a low-energy effective Lagrangian. The effective Lagrangian describes 

the interactions of the would-be Goldstone bosons at energies below the scale of 

symmetry breaking, and below the masses of any other particles associated with 

the symmetry breaking sector. 

When the global symmetry group is larger than the usual SU(2) x SU(2) of 

the standard model, the effective Lagrangian contains new scalar fields, in addition 

to the usual would-be Goldstone bosons. In most models, these pseudo-Goldstone 

bosons are relatively light, so they should be copiously produced at the SSC or 

LHC. In general, these particles affect the scattering of longitudinal W’s and 2’s. 

If some carry color, as is typically the case, they also enhance the gluon fusion 

production of longitudinal vector bosons. 

To lowest order in an energy expansion, the effective Lagrangian contains a 

single term: 

L(‘) = $ Tr(D,CtDpC) 

c = exp 
(1) 

where f is the pseudo-Goldstone decay constant. In this expression, the T” are the 

(broken) generators associated with a global symmetry group G, and Tr(T’T*) = 
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a P”. For G = SU(2) x W(2), the fields rrLI are the would-be Goldstone bosons 

associated with the W and 2. For larger groups, they also include the pseudo- 

Goldstone bosons discussed above. 

The covariant derivative DJ describes the embedding of SU(3) x sum x 

U( 1)~ into the symmetry group G. For G = SU(2N) x SCJ(2N), we find f = v/d’?? 

in terms of the usual v N 250 GeV. The covariant derivative is given by 

i 9 D,C = O,C + ;g.q[Ta, Cl + - - 
I 

2dx 
WjT’C - 1. LB,CT’ , 

24x 
(2) 

where Gg is the SU(3) color gauge field, and Wj and B,, are the SU(2)& x U(l)y 

gauge bosons. In this expression, the color coupling is written as a commutator be- 

cause color SU(3) is contained in the diagonal subgroup of G. In contrast, Sum 

is purely left-handed, while U(l)y acts on the right. The covariant derivative deter- 

mines the lowest-order couplings of the Goldstone particles to the standard-model 

gauge bosons. 

The lowest-order effective Lagrangian can be used to describe pseudo-Goldstone 

boson scattering to order p2 and gluon-gluon scattering to order p4 in the energy 

expansion. To this order, the predictions are universal, in the sense that they de- 

pend only on the symmetry group G and on the decay constant f. At order p4, 

the pseudo-Goldstone scattering amplitudes depend on the next-to-leading-order 

effective Lagrangian, which contains four operators: 
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L(4) = ~Tr(D,CtD’C)Tr(D,CtDYC) 
+ &Tr(D,CtDT)Tr(DpCtDT) 
+ 

NLs =Tr D,CtD”CD,CtDYC 
( > 

+ D,CiDYCD,CtDYC > 

(3) 

The coefficients L; are expected to be of order one; they are determined by the 

dynamics that underlie the symmetry breaking. 

It has been known for quite some time that the chiral expansion breaks down at 

a scale of order A .S 4?rv/N [4]. Th’ IS v al ue is baaed on the naive argument that loop 

corrections must not dominate tree-level results. Of course, the argument does not 

fix the scale very precisely. For the purist, this is irrelevant, since the expansion 

only makes sense at energies much lower than the scale of symmetry breaking. 

From a practical point of view, however, one must decide where to trust a given 

calculation. It is often suggested that the cutoff be placed at the scale where the 

lowest-order pseudo-Goldstone boson scattering amplitudes violate perturbative 

(two-body-elastic) unitarity, a scale which is also of order 47rv/N. 

Since the lowest-order effective Lagrangian is unique, its predictions do not 

distinguish between different dynamical models of symmetry breaking. These dis- 

tinctions appear at order p 4, in the form of the unknown coefficients L;. For 

practical applications, one would like to identify a region where the energies are 

high enough for these terms to be significant, and yet low enough for one to trust 

#l the energy expansion. 

#l Unitarieation prescriptions have been proposed aa a way to extend the region of validity 
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As a practical answer to this question, we have advocated using the next-to- 

leading-order chiral Lagrangian in the vicinity of the scale where the lowest- 

order partial waves first violate unitarity [6]. The motivation for this choice is 

1. The energy is large enough for the Li to be important. 

2. The corrections stay within a factor of two of the lowest-order amplitudes. 

Of course, we must now decide where to stop trusting the next-to-leading results. 

We assert that it is reasonable to use the order p4 chiral Lagrangian in the region 

where the 0(p4) partial waves preserve unitarity. Alternatively, we can also add 

resonances to the model [7] and preserve unitarity beyond the naive counting scale 

A. In this case, the formalism should not be trusted beyond the scale A - 47rv/N, 

about 800 GeV for N = 4. 

Although chiral perturbation theory gives rigorous low-energy results, it be- 

comes more model-dependent when used at higher energies. We can still use it as 

a qualitative guide from which we can infer general trends, but we should not take 

any particular numbers very seriously. If we wish to make detailed predictions 

for all energies, we must construct (and solve) explicit models. Given the large 

number of possibilities associated with electroweak symmetry breaking, we believe 

that our more modest goals are both practical and reasonable. 

Let us now compute the pseudo-Goldstone-boson scattering amplitudes within 

this framework. For G = SV(2N) x SV(ZN), spontaneously broken to SU(2N), 

there are three channels that grow with N [8]. They are the singlet, the symmetric 

adjoint and the antisymmetric adjoint. The .I = 0 partial wave in the singlet 

of the calculations [5]. Thia is contrary to the spirit of effective Lagrangians, where the 
fundamental physics is parametriacd by the Lc. 
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channel is 

Red =&{:+A [Li+-;) +L;w(l+;) 

+y(4n’-5)+sgy%2_,)] 

- 34;;~:fr(15010~(;) -II)} ) 

while the J = 1 partial wave in the antisymmetric adjoint channel is 

and the J = 0 partial wave in the symmetric adjoint channel is 

(4) 

(5) 

(6) 

- 34;;::f4 (601%($ + l)] 
In these formulae, n = 2N and we have treated the pseudo-Goldstone bosom as 

massless. Our amplitudes agree with those of Ref. 9, once we account for the fact 

that we have chosen a different renormalization scheme: 

L1 = Li(/.L) - &+ - k 

L2 = L’,(p) - ;- - $ 

LJ = L;(p) - & - 4 

11 1 
L4 = -q(P) - 487 - 18 

(7) 
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Our prescription is such that all constants that appear at order p’ in the singlet, 

the antisymmetric adjoint and the symmetric adjoint amplitudes are absorbed into 

the renormalized coefficients. 

In Figure 1 we have plotted these partial waves for some particular values of 

the L:(p). We see that there can be a considerable difference between the energies 

at which the U(p2) and the 0(p4) p ar i t al waves first violate unitarity. We associate 

the unitarity violation with the appearance of some structure in the fundamental 

theory that cannot be properly described by the low-energy constants (such as 

#’ a resonance). The chiral Lagrangian is most useful when these structures are 

pushed as high as possible, roughly, to the naive counting scale A. For comparison 

we also present in this figure the result of a model with vector and scalar resonances 

coupled via the Lagrangian 

,o,,,(~D,,CD,~~~ + 

The couplings of the resonances to the pseudo-Goldstone bosons can be written in 

terms of the resonance widths.#3 

Let us next turn our attention to gluon fusion. To lowest order in chiral 

perturbation theory, ,Cc2) does not induce the production of longitudinal gauge 

boson pairs by gluon fusion. This process first occurs at order p’ in the chiral 

expansion, that is, at one-loop with L(‘) and tree-level with /Cc4). To this order, 

the gluon fusion process is independent of the Li. This is in sharp contrast to 

#Z If there is such low energy structure, it is clear that it should be studied directly and not 
by an energy expansion. 

#3 ( ia such that ( . ( = X. The vector resonance haa been introduced aa an antisymmetric 
tensor field following Gasser and Leutwyler, Ref. 4. 
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the pseudc+Goldstone boson scattering amplitudes, which depend on the L;. The 

amplitude for gluon fusion production of ZLZL, for example, is given by: 

( > 
(9) = CP(ql)eY(n2)6=~CT(R)~ -;s,. + qzpql” , 

R 

where T(R) is l/2 for each color triplet and 3 for each color octet. 

For the SU(8) Farhi-Susskind model, the lowest-order pseudo-Goldstone boson 

scattering amplitudes violate unitarity [lo] at about 440 GeV. To order p”, however, 

this scale depends on the Li. For some choices of the Li, unitarity violation can 

be pushed near the naive counting scale of A ,S 800 GeV. Therefore we claim that 

to order p”, it is reasonable to use Eq. (9) a eve threshold, up to about 800 GeV. b 

Above 440 GeV, the result becomes more model-dependent, and as we have said 

previously, it is only intended to give a rough guide. 

In a recent paper [lo], it has been argued that our glue-glue amplitude is an 

obvious overestimate of the physical amplitude because the singlet SU(8) partial 

wave violates unitarity above 440 GeV. We wish to stress that this violation of 

unitarity occurs in the pseudo-Goldstone boson channels and not in the gluon 

fusion channel, and that the precise energy at which it occurs is model-dependent. 

As we have emphasized, to order p4 in chiral perturbation theory, the glue-glue 

prediction is universal, while the scale of unitarity violation in pseudo-Goldstone 

scattering is not. To illustrate our point, we will first discuss the related process 

7~ + ?y”xo. We will then construct an explicit model that does not violate unitarity 

below A N 800 GeV in the pseudo-Goldstone boson scattering amplitudes, and yet 



still results in a gluon fusion production of 2~2~ pairs as large as the one we 

presented in Ref. 2. 

We show in Figure 2 the analogous QCD process 77 + ?y”no, and the predic- 

tion from chiral perturbation theory [11,12]. We have presented the lowest-order 

chiral perturbation theory result up to a very high energy, 1.4 GeV, where we have 

no reason to believe this prediction. However, we see that it does give a reasonable 

qualitative picture, accurate to a factor of two, below the naive counting scale of 

1.2 GeV.#I 

We now turn to our second and more important point, that the physics of 

vector-boson scattering is very different from that of gluon fusion. Within pure 

chiral perturbation theory, this is clear when one goes to order p’. At this order, 

the gluon fusion process receives many contributions, some of which do not directly 

affect pseudo-Goldstone-boson scattering. For example, gluon fusion receives new 

contributions from the operator: 

&3) = $Tr(D,EDaEt)G”‘YG~y 

These terms clearly do not contribute to pseudo-Goldstone-boson scattering except 

at one loop in &CD. Given the size of (x., these contributions can be safely ne- 

glected when compared to the potential strongly-interacting electroweak symmetry 

breaking sector. 

Unfortunately, at order p’, chiral perturbation theory is not practical due to the 

large number of operators that appear. We can, however, resort to specific models; 

for example, including resonances. Above 440 GeV, it is possible for a resonance 

#4 Recall that the lowest-order J = 0, I = 0, partial wave amplitude in T--T scattering violates 
unitarity at about 500 MeV. 
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like the techni-rho to unitarize the pseudo-Goldstone scattering amplitudes, as 

shown in Figure 1. However, the techni-rho does not appear aa a resonance in the 

gluon-fusion process. Although the techni-rho certainly affects glue-glue scattering, 

this mode is much more sensitive to resonances which couple directly to the glue- 

glue intial state, as a techni-sigma or techni-f2 [13]. For example, the following 

operator induces a direct coupling between the techni-sigma and the gluons, 

,C= who -uG;~G~“= 
ml7 

In Figure 3 we show the contribution from a color octet of pseudos to 2~2~ pro- 

duction via gluon fusion at the SSC. We compare this to the contribution from 

the techni-sigma of Eqs. (8), (11). W e h ave chosen the same values of mass and 

width used in Figure 1, as well as h, = 0.8, a number of the same order as those 

found in the model of Cahn and Suzuki [8]. We see that in this model, pseudo- 

Goldstone boson scattering does not violate unitarity below A ,zZ 800 GeV, and 

yet, the production of 2~2~ pairs in gluon fusion is comparable to that obtained 

in lowest-order chiral perturbation theory. 

Direct couplings as that in Eq. (11) are completely unconstrained by the uni- 

tarity of the pseudo-Goldstone scattering process. For example, in &CD, the f2 

gives a major contribution to photon-photon scattering, as shown in Figure 2. At 

energies near 1 GeV, the resonant production of the f2 provides the dominant con- 

tribution to the scattering amplitude. The only constraint on the f2 coupling to 

photons comes from the 77 --t ?r”zro process itself. 

In this letter we have argued that pseudo-Goldstone boson scattering and gluon 

fusion probe different aspects of electroweak symmetry breaking. We have empha- 

sized that different physics couples to the two initial states. In chiral perturbation 
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theory, this shows up in the different operators that contribute to each process at 

a given order in the energy expansion. In models with resonances this shows up in 

the direct couplings of resonances to the glue-glue state. We have performed our 

analysis for chiral SU(2N) x SU(2N), h owever, it is clear that the same conclusions 

hold for the more usual case N = 1. The only difference being that N = 1 does not 

allow additional colored pseudo-Goldstone bosons. Although we have presented re- 

sults for massless pseudo-Goldstone bosons, we have checked that including a small 

mass does not affect the qualitative results of this paper. 
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FIGURE CAPTIONS 

1) We show the partial wave amplitudes for the singlet channel (a); the an- 

tisymmetric adjoint (b); and the symmetric adjoint (c). The dotted curves 

represent the real part of the lowest-order results, and the dashed curves rep- 

resent the real part of the order p4 results for L:(p) = -0.10, L’,(p) = 0.30, 

L:(p) = -0.09 and L:(p) = -0.13, all at p = 384 GeV. The solid line is the 

modulus of the amplitude for a tree-level model with a vector resonance of 

mass 400 GeV and width 40 GeV and a scalar resonance of mass 400 GeV 

and width 50 GeV. 

2) The cross section for 7~ -t ?y”?yo, from Ref. 11. The solid line gives the U(p’) 

prediction in SU(3) chiral perturbation theory. 
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3) Production of 2~2~ pairs by gluon fusion at the SSC with a rapidity cut 

lyl < 2.5. The dotted line corresponds to one color octet of pseudo-Goldstone 

bosons. The solid line corresponds to a techni-sigma of ma58 400 GeV, width 

50 GeV and h, = 0.8. 
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